• Users Online: 970
  • Home
  • Print this page
  • Email this page
Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
Year : 2018  |  Volume : 8  |  Issue : 1  |  Page : 13-16

Comparative evaluation of the effect of variation in light-curing cycle with a time gap and its effect on polymerization shrinkage and microhardness of conventional hydrophobic sealants and moisture-tolerant resin-based sealants: An in vitro study

Department of Pedodontics and Preventive Dentistry, Tamil Nadu, India

Correspondence Address:
Dr. Packialakshmi Arumugam
No. 3/1105, 2nd Street, Sulaiman Nagar, Metukuppam, Thoraipakkam, Chennai - 600 097, Tamil Nadu
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/ijmd.ijmd_56_17

Rights and Permissions

Aim: This study aimed to evaluate the effect of light-curing modes (standard mode and modified mode) on the polymerization shrinkage and microhardness of a conventional hydrophobic resin sealant – Helioseal F – and a moisture-tolerant resin sealant – Embrace™ WetBond™. Subjects and Methods: A total of forty glass ring molds (8.5 mm in inner diameter and 2 mm in height) were prepared, and etching of the internal surface of the molds was done for 5 min with hydrofluoric acid. The materials (n = 20/group) were placed into the molds and, in Group I, curing was done in contact with the sample surface for 20 s. In Group II, curing was initiated for 10 s at 1-cm distance; a time gap of 10 s was given, followed by 20 s curing in contact with the sample surface. The volumetric polymerization shrinkage and microhardness were calculated. Statistical Analysis Used: All data were analyzed statistically using unpaired t-test at P < 0.05. Results: Curing cycle did not significantly affect the polymerization shrinkage and microhardness of both conventional and moisture tolerant resin-based sealants. The composition of the sealant had a direct influence on polymerization shrinkage and microhardness values. Conclusion: In the clinical scenario where isolation is highly critical, one may consider the use of moisture-tolerant resin-based sealants. This could be augmented with soft-start polymerization which would result in lower degree of polymerization shrinkage without affecting the physical properties, thereby yielding enhanced clinical performance of the pit-and-fissure sealants.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded18    
    Comments [Add]    

Recommend this journal